web design tutorial – part 1
faculty: mzf

Lecturer, School of Business

North South University

Why learning HTML and CSS makes sense
Tools like Dreamweaver are great, especially if you are building old-style web sites based on tables, sliced images, et cetera. But if you want to be able to build what I call 4th generation websites, then these tools will get in the way of you learning and will actually slow you down!

Learning to build your web sites using HTML will give you far better control over the process and ultimately your web sites. You will have a far deeper understanding of the web, and as a result you will create better web sites quicker – much quicker.
Lesson 1 : Basic Concepts

Basic Concepts: Part 1

An introduction to domain names, web servers, and website hosting

I assume that you know nothing about the inner workings of the Internet; maybe you’re not even sure how people actually get to web sites, where the web sites are actually sitting, what the web is in the first place….

In this article I am going to give you the minimum you need to get your ‘feet wet’ so that we can quickly get into building web sites. I won’t go into painful micro-details that would put all but true nerds to sleep, again there is just enough so that you have a basic understanding of what’s going on.

What is the web?

In a nutshell, the web is a whole bunch of interconnected computers talking to one another. The computers (on the web) are typically connected by phone lines, digital satellite signals, cables, and other types of data-transfer mechanisms. A ‘data-transfer mechanism’ is a nerd’s way of saying: a way to move information from point A to point B to point C and so on.

The computers that make up the web can be connected all the time (24/7), or they can be connected only periodically. The computers that are connected all the time are typically called a ‘server’. Servers are computers just like the one you’re using now to read this article, with one major difference, they have a special software installed called ‘server’ software.

What is the function of server software / programs?

Server software is created to ‘serve’ web pages and web sites. Basically, the server computer has a bunch of web sites loaded on it and it just waits for people (via web browsers) to request or ask for a particular page. When the browser requests a page the server sends it out.

How does the web surfer find a web site?

The short answer is: by typing in the URL, or in other words, the web site address. So for example, if you wanted to find the web site www.killersites.com, you would type in the address into your web browser’s address bar or maybe use your ‘favorites’ or ‘bookmarks’ link to Killersites.

There are other ways to find web sites (like search engines,) but behind the scenes web sites are all being found by going to the web site’s official address. That brings us our last nerd detail: how does a website get an official address so that the rest of the web can find it?

Registering your domain name

If you ever wondered what the heck registering a domain was all about … you probably figured it out by now! But just in case – registering a domain name gets you an official address for your web site on the World Wide Web. With this ‘official’ address, the rest of the web can find you.

Like your home address is unique in the real world, there also can’t be any duplicate addresses on the Internet, otherwise no one would know where to go! In other words, domain names are unique addresses on the web.

Why does registering a domain name cost money?

If you want to have your own unique address on the web, your own domain name, it will cost a few bucks for each year you want to ‘own’ the name. The cost of registering a domain name ranges from less than $10 USD to about $30 USD per year. You can register a domain from 1 to 10 years.

The reason for the cost is that the central ‘address book’ of all the world’s domain names needs to be updated – somebody’s got to pay for that! You may have noticed that I just snuck in a little extra piece of information: the giant ‘web address book’ of domains.

That leads us to our last bit of nerd information: when you type in a website’s domain name or click on a link that takes you to that domain name, your browser starts asking servers where that particular domain name is sitting (on the web) and the servers are then able to tell the browser where to go by referring to the giant address book I mentioned above.

Basic Concepts: Part 2

Getting your web site ‘live’ on the Web

With the nerd background details under our belts, we can now learn about the two steps to going live on the Web:

1. Register your domain.

2. Rent some server space.

1. Registering your domain

There are many companies out there that allow you to register the domain name for your web site. Prices vary, as does the quality of service, but at the end of the day, they all handle the details of getting your domain name listed in the giant address book I spoke about earlier.

These days, you will find that many of the names you may be interested in registering are already taken. As I mentioned above, domain names have to be unique and many have been slurped up.

What is the difference between .com, .net, .org, etc.?

Practically speaking, there is really no difference these days. Search engines don’t discriminate between a .COM address and a .NET address. The only thing you might consider is that people tend to type in .COM automatically since it was the first publicly known domain extension. So when registering a domain name, I would go for the .COM first and if it was taken, I would then try for any of the others. (.net, .org, .tv, etc. …)

You probably guessed; a .COM address is not the same domain name of the same name with a different extension. So for example:

www.killersites.com is not the same place as www.killersites.net
As such, each of the addresses can be registered separately.

2. Renting server space to ‘host’ your web site

You need to rent space on a server so that it can serve your web site to the World Wide Web; this is often called ‘hosting’. Companies that provide this service are often called ‘host’ or hosting companies.

After you’ve registered your domain, all you need to do is contact a hosting company and tell them your domain name. They will be able to guide you through the process and you should be live on the web in no time – typically within a week or less.

Basic Concepts: Part 3

A cheaper option

Some people may not want to buy a domain or pay for hosting because they only have a personal web site for fun or practice. You can still get your website live on the web by using a free hosting service that allows you to create what is called a ‘sub-domain’. A sub-domain is just a domain that is part of another domain. So if killersites.com offered sub-domain hosting you could have an address like:

www.killersites.com/yourWebsite/

Or it could be like:

http://yourWebsite.killersites.com

Whichever way the free hosting service decides to do it. The point is that your web site domain is really a part of the parent domain, in this case killersites.com. Doing it this way, you don’t need to buy a domain name, and you don’t need to pay for hosting.

This is fine for fun or project websites, but if you are serious about your web site (say it’s your business website) using sub-domains is like taking someone else’s business card and writing your name on it! You figure it out …

One last point, I’ve heard of free hosting services that will allow you to host proper domains with them for free and without annoying ads that other free hosts will insert into your pages. But I’ve never used them, and in my opinion you always get what you pay for. In the internet’s recent past there was once a crop of free service providers that would give away access to the web via dial-up, they were notorious for bad service and all have since gone bankrupt … I wonder why?

Moving your website files onto the server

After you have your domain name registered and your hosting service in place, the last step is to upload the website onto the server. You can transfer your web site to your host’s server using an FTP program.

An FTP program is a type of software that is used to move files from one computer to another over the Internet. FTP is the acronym for: File Transfer Protocol; this just means that this is a ‘way’ of moving files.

There are several free FTP programs you can use to move your files and many HTML editors and web design programs like Dreamweaver have FTP capabilities built in.

One option you probably have to ‘FTP’ your files to the server is Internet Explorer. Internet Explorer 5 and up have an FTP program built right in. You can use it by typing in the FTP address of the server in the address bar preceded by the keyword: FTP. Here is an example:

FTP://207.35.15.69/yourwebsite/
Lesson 2 : Building A Web Page

Building your first web page: Part 1

In this ‘hands-on’ module we will be building our first web page in no time. We just need to quickly cover a couple of points beforehand to help get our feet on the ground.

The three ways you can build a web page

1. Use a pre-made template: WHAT IS A WEB DESIGN TEMPLATE?

A web site design template is a pre-made website design template which can be customized to reflect your company’s branding. Website design templates can be found in various formats like Photoshop and HTML. Many times, these templates are compatible with HTML editors like GoLive, FrontPage, and Dreamweaver.

Web site templates can be very useful; they can be used by experienced web designers to ‘jump-start’ the creation of a website. They are also a way for people to put out great-looking web sites quickly with little or no knowledge of HTML and web design.

2. Use an HTML editor like FrontPage or Dreamweaver:

HTML editors make building web pages feel like (to a certain extent) creating a document in Microsoft Word … it’s made pretty easy. But the downside is that you lose a certain amount of control of what you’re doing and in some cases become dependent on the program.

3. Hand-code your HTML in a text editor like Notepad:

That means you type in the HTML code yourself. This is the approach we are going to use here, because it’s the quickest way to learn how to build web pages, and it is arguably the best way because you have the most control over what you’re doing.

Ok, now that we know the advantages of hand-coding web pages, let’s jump into just the bare minimum of theory, then we will build our first web page!

What are HTML tags?

HTML tags are specifically formatted text that creates ‘markers’ for web browser to read and interpret. These ‘markers’ tell the web browser what and how to display things on the web page. Tags are placed in and around text and images (text and images are some of the ‘things’) that your want to have appear in your web pages.

HTML has a whole bunch of tags (just like the alphabet has a whole bunch of letters) that the web designer can use to build web pages. As mentioned above, tags have a specific structure so that when the browser is reading an HTML page, it knows the tags from the normal text.

Tags are typically words or abbreviations of words placed between angled brackets. So for example: to make text bold, HTML has the ‘bold’ tag that looks like this:

This text will be bolded
Another commonly used tag is the paragraph tag:

<p>
This is a paragraph of text.

</p>
Building your first web page: Part 2

Tag Diagram

You may have noticed that HTML tags come in pairs; HTML has both an opening tag (<tag name>) and a closing tag (</tag name>). The only difference between the opening and closing tags is that the closing tag contains an extra forward slash.

[image: image1.png]sagit ek wT orvard s

thih‘<h>sample</4|tence

openingtag closing tag

Some EXAMPLE HTML tags that might make things clearer:
Makes text bold
<i>Makes text italic</i>
<h1>Tells the browser that this text is very important -the browser usually

makes this text really big</h1>
<table>Creates an HTML table - think of a spreadsheet</table>
I hope you can see the pattern in the list above.

HTML tags are not just for placing and formatting text, HTML tags can be used to include other things like: animation, video, Flash, audio, and even multimedia programs.

Comparing HTML code and the web page it creates

Let’s start with a very simple web page to make it as easy for you to understand. First lets look at the final page: sample web page
Now that we’ve seen what the page looks like, let’s look at the HTML code used to create the page.

What you should do now is take a little time and compare the HTML page and the page with the code that is used to create the page. Notice where the tags are and what they are doing.

Some Theory: The structure of an HTML page

An HTML page is divided into two major sections:
1. The head
The head (<head>) section contains underlying information about the page which does not get displayed in the web page (except for the title of the page). It does, however, have an affect on how the web page is displayed.

2. The body
The body (<body>) section: this section contains all the stuff that appears on the actual web page when someone happens to come along with their web browser. We are talking about the actual text, images, flash movies, and so on that people will see. That, of course, means the tags used to format all this stuff are there too…

You will notice that both the head and the body sections of a web site are marked in the HTML page with their respective tags: (<head> </head>) and (<body> </body>).

If the body tag creates the body of an HTML page, and the head tag creates the head of an HTML page, how do you create an HTML page itself? You guessed it, use the HTML tags:

<html></html>
The ‘mother of all tags’ is the HTML (<html>) tag, and like all tags it must have a start tag (<html>) and an end tag (</html>). The difference between the start and end tags is the forward slash (/), but you already knew that.

Every web page MUST begin and end with the HTML tag, otherwise the web browser (programs like Internet Explorer) will not be able to display the page. You also have to have the head tags and the body tags. All the other tags are optional.

So the bare-bones HTML page must have these tags and in this order:

<html>

<head>

<title>Title of your page</title>

</head>

<body>

</body>
</html>
Building your first web page: Part 3

Time to build your first HTML page by hand

I could go on with more theory and send half of you to sleep (trust me); instead you are now going to actually build your very first web page! One of the best ways to learn something is to actually do it, so don’t worry if things are a little foggy for you right now, as we build the web page, things will start to clear up.

Step 1: Let’s write some HTML code

Open up a text editor like Notepad on Windows and type this (or: Note: Here’s a PDF that shows you how to create html documents on Mac):

<html>

<head>

<title>Your first hand coded page</title>

</head>

<body>

<h2>Hand coding web pages is easy! </h2>

<p>I would like to thank everyone who helped me type

 this page.</p>

</body>
</html>
Step 2: Save the file as an HTML document

Save your HTML file (save it to your desktop so you will be sure to find it!) using your text editor’s ‘Save as’ function and name the file webPage.html.

You can choose any name you want, as long as you follow these four rules:

1. Web page names cannot have spaces in them: ‘web page.html’ is no good but ‘webPage.html’ is perfecto.

2. The name has to end with either .html or .htm; by ending the file name this way you are telling the computer that this is a web page and that it should use a web page reader / browser to view it.

3. Don’t use funny symbol like: $, %, ^, & in your page names. Stick to standard letters and numbers.

4. In Notepad, please save the file as UTF-8.

Mac OSX Notes: How to create an HTML document with Mac OSX (PDF)

Step 3: Marvel at your work and view your page

You should be able to now just double-click on the page or open it up with your web browser by going to its “File” menu, then select “Open file” and select your page.

You should be able to see your page in all its glory! Ok, not too much glory, but it was your first hand-coded page after all! If you don’t see anything, then compare what you typed with the original I gave you and just go over the process again. You will get it if you give yourself a chance!

If you’re not sure if what you created is looking like it’s supposed to, you can check out the final page here and compare it with your own.

Conclusion

Now that we’ve built our first web page, we can now move on to building our first web site.

Lesson 4 : Building A Web Site

Building a web site: Part 1

Now that you’ve created your first web page and have some of the basics down, we can move onto building a web site.

Introduction: What is a website?

A website is just a bunch of web pages connected together through something called links. In HTML there is a special tag called (you guessed it!) the ‘link’ tag, and it looks like this in its most basic form:

And here is an example of the link tag with a destination filled in:

Go to killersites.com
It’s safe to say that we have all used links when surfing the web. Whenever you click on a link that takes you to another page, you are using a link tag. The link tag is the most important tag in HTML; it makes the Internet interconnected!

In the above example, we see that the link tag points to the web site www.killersites.com and the text that is displayed on the web page is: ‘Go to killersites.com’. So if you wanted to create a link that took someone to www.yahoo.com, for example, you would replace the www.killersites.com with www.yahoo.com, Yahoo’s address.

Like all other tags, link tags have an opening tag () and a closing tag (). Links tags are a little more complex than the other tags we have seen so far, but I think that you can handle it!

Some of you may have noticed that there is some text in the link tag that comes before the web site address; the text I am talking about is this:

http://

This text tells the browser that the link is pointing to a web page. Sometimes links can point to other things besides web pages; things like movies, PDF files, and so on.

Absolute vs. Relative URL

To link pages in your web site from one page to the next you have a choice of using one of two types of addresses: absolute addresses (complete) and relative addresses (partial).

Before I go on, URL is a nerd’s way of saying ‘address’.

An absolute URL is the complete address of a page that can be found from any other location on the Internet. So let’s say you have a page called contact.html on the root of your web site who’s domain name is www.myStore.com . In this case, the absolute URL of the contact.html page would be:

'http://www.myStore.com/contact.html'

Ok, now I know I lost a few people because I used a word that I did not explain: ‘root’.

When geeks talk about the root of a web site, they are taking about the base of the web site, the starting level.

The files (pages, images, etc.) that make up your web site are organized in folders just like any other files that you store on your home computer. Your host will give you a space/directory on their server for you to place all your website’s files.

This space/folder assigned to you will be the ‘root’ of your web site. This means that as far as the Internet is concerned, anything (html files, images, other folders, etc.) in this folder is directly accessible by your domain name plus the name of the item. Huh! Even I’m a little confused! Perhaps a little example will explain this better:

Let’s say that on the root level of your website, you had these HTML files:

index.html and contact.html

And in a folder called ‘products’, you placed whole bunch of other pages with one called ‘bookcases.html’. You decided to put all your ‘product’ HTML pages into a ‘products’ folder to keep the web site more organized – a smart thing to do!

Building a web site: Part 2

Absolute vs. Relative URL – continued

Can you guess what the absolute URL would be for the web page ‘bookcases.html’? For the domain name: ‘www.myStore.com’ it would be:

http://www.myStore.com/products/bookcases.html

Just think about it a little and hopefully it will sink in! If it doesn’t right away, don’t worry, it will come.
[image: image2.png]VIEW OF A WEBSITE FROM THE ROOT DIRECTORY

St - webste (Ct{Dacuments and Settings|Owner|DesktopDream
mages

=8
products.him SUB DIRECTORY
@ indexim

@ contacthtm

Root address/URL example:
www.how-to-build-websites.com/contact. htm

SUB DIRECTORY address/URL example:
www. how-to-build-websites.com/products/products.htm

Relative URL

A relative URL is a partial address that is relative to the page where you placed your link. So if you were linking from the index.html page of this web site to the bookcases.html page your relative URL (address) would be:

products/bookcases.html

And the actual link tag would look like this:

Check out our bookcases!
You are basically telling the browser that the HTML page we want to load is in the products folder. Play around with links and folders on your own web site and things will become very clear. This is important because if you get the address wrong, it won’t load!

Ok, one more example to help you guys and gals out there: lets say you wanted to link to the page ‘contact.html’ from the ‘index.html’ page:

Contact us
Since the page ‘contact.html’ is on the same level as the page ‘index.html’, we need only include the name of the html file in the link address.

Summary of the process of creating a web site

Now that we got some preliminary theory out of the way (it’s about time,) we can actually go over the 10 steps you’ll need to take to build and bring a website ‘live’ on the World Wide Web.

1. Define the purpose of the web site

When starting a web site project, you must first clarify what the goals of the website are. Knowing your goals will impact the choices you make when putting the web site together and ultimately contribute to its success or failure.

This may sound obvious, but many web sites seemed to have been put together without the goal kept in mind. The result is a messy web site that is disorganized and harder to build and maintain.

So if, for example, the goal is to create an e-commerce web site that sells products, then as a web site designer you have to consider things like the following:

1. Do you need credit card processing capabilities?

2. Are you going to need a shopping cart system to take orders?

3. How many items will be sold on the web site?

This is just one example. The point to take away is that by defining the purpose you can better prepare and get the right tools / people for the job.

2. Diagram the structure of the website.

A simple diagram helps to visualize the web site for both you and your client – this assuming someone has hired you to build a website. Nothing special is really needed, just a series of boxes representing each page in the site with lines connecting them showing the linking strategy. A pyramid scheme is usually used to show the hierarchy of a web site from the splash/home page down*.

Note: I use the terms ‘splash page’ and ‘home page’ interchangeably most of the time. There is a subtle difference from the perspective of an old-time web nerd, but for the rest of the world, it basically is the first page someone hits when they visit a website.

Building a web site: Part 3

Summary of the process of creating a web site – continued

3. Write out the text for the web site

Before you start writing any HTML, you should (in your favorite word processor) write out all the text that you need to include in the website. Doing so will help you with the design process.

Another thing you should do is to make sure that the text is finalized before it gets to the web site; it is much easier to correct things in a word processor than in an HTML page.

4. Choose a basic layout that will be used on all pages

Armed with your website diagram and your web site’s text (complete text!) you can now choose a basic layout for your pages. You can go crazy with some funky artsy web site (and sometimes it can work), but most of the time you should use standard layouts that people are used to:

1. Left side navigation.

2. Top navigation

3. Right side navigation.

When in doubt, think of how books are laid out.

5. Choose the basic color scheme and fonts for the site

Your next task is to start considering the basic colors and fonts that you’re going to use. You want to choose a style that fits the subject of the web site. For example: pink doesn’t do well for a hardware store, maybe some steel blues instead! The point to take away is to establish the style of the web site before you start creating pages, otherwise you may find yourself doing pages over again!

Later on in this tutorial I will teach you how to use an easy to use technology that makes web sites a breeze to style: CSS

Building a web site: Part 4

Summary of the process of creating a web site – continued

6. Build out the website

With the before-mentioned completed, you’re ready to actually start creating your web pages. So what you need to do is:

1. Take the structure you developed in steps 1 to 5 to create your web pages.

2. Link the web pages together.

Now is the time for you to practice a little and actually build a small web site! If you can’t think of something, create one on your favorite movie with a page for each main character.

Remember that you only get good at doing something by doing it!

7. Choose a domain name

Once your website is built, you will need to get it on the web – that means you need a domain name.

All websites need a domain name, and your choice of a domain name can impact on how many people find your website, so choose carefully! Here are some points to remember when considering your choice of a domain name:

1. Domain names that tell you something about the web site are food for search engines and they help clue people in, too. If for example you were building a website for a hardware store, a domain name like ‘discountHardware.com’ is pretty good, it tells you everything about the web site immediately. If you called it ‘bigSteel.com’ instead, you can argue that we are not giving such a clear message of what the web site is about. Even if the hardware store was actually called ‘Big Steel Hardware’, I would go with ‘discountHardware.com’.

2. Search engines such as Google will look at several elements of your web site to try and determine what your website is about. One of those key elements is the domain name; Google will look for keywords in the domain name that help the ‘Google bot’ (Google’s automated snooper software) to categorize your web site.

One question that is asked often enough is whether the domain name has to have the same name as the business it is representing – the answer is no.

Next!

Building a web site: Part 5

Summary of the process of creating a web site – continued

8. Register your domain name

This can be trickier than you think, since many of the good domain names are taken. You can pretty much forget about single-word domain names like business.com and auctions.com; they are long gone! You will need to come up with combination words like ‘how-to-build-websites.com’.

Today you have many more options for domains; in the past, businesses could only register .com’s because .net and .org domains where reserved for special types of organizations. Those old restrictions are now gone, and there are a wide variety of extensions you can choose from:

.com, .net, .org, .tv, .biz, and several others including country codes like .ca (Canada), .us (USA), .co.uk (United Kingdom) et cetera.

In terms of the search engines, it makes no difference which ending (extension) you use.

Some people might argue that the first thing you need to do is to register your domain name, then build your web site. That may be true if your website design is impacted by the domain … for some people this is the case, and for others it isn’t. You can make that call for your own websites.

How do you know if a domain is already taken?

The quickest way to figure this out is to type in the domain name in your browser and see if it takes you anywhere. This is not always useful though because many domains have been bought but have no website!

That means the best way to figure this out is to go to your registrar. Every registrar will have a form where you can check to see if domains names are available just by typing it in.

The best thing about going to the registrar is that when you type in a domain name you are interested in their systems will not only tell you if the .com is available, they will also give you the scoop on all the other variations – a big time saver.

9. Find a hosting company: What to look for in a host

Today, hosting web sites cost much less than what they did just a few years ago, and that’s a good thing. You can go from zero cost hosting to very pricey solutions, depending on your web site’s needs.

What can affect the cost of hosting a website?

· Traffic – more traffic can cost you more per month. But for this to affect you, you would have to have a pretty popular web site. Since you are just starting out, I wouldn’t expect that problem for a while.

· Extra features / services – you may need to use a database (for e-commerce) or need many email accounts, extra disk space to store all your websites files. Each host will have a list of plans that you can choose from depending on your needs.

In the end you have to choose the hosting company and hosting plan that is best suited to for your web site. Cheaper is not always best, but it may be good enough for you.

10. Upload your website to the hosting company’s server

Once you created your web site, paid for your domain name, and picked your hosting company, it’s time to upload the web site onto your host server for the world to see. Typically, you would use something called FTP to do this; you hosting company should be able to help you with the details when setting up your account.

Some quick tips to remember

1. Keeping web pages small – under 60k

2. Keeping content headers (H2 tags) clear and to the point.

3. Keep paragraphs small.

4. Keep contact information (email – phone) easily found in same place on all pages.

5. Keep look and structure of the web pages consistent across all pages.

6. Provide a ‘Home’ button to take the user back to the cover (a.k.a.: splash, home) page of the website.

7. Make sure links are always underlined. (Don’t use CSS to remove the underline: big mistake if you do since people assume that underlined texts are links.)

8. The company logo should appear on every page in the same spot and it should always be a link back to the home page.

Now that we have a good idea of what building a website is all about, we can move on to the next subject: Using Cascading Style Sheets (otherwise known as CSS) to help us make our pages look great!

Lesson 4 : CSS Intro

Our next step is to learn CSS (Cascading Style Sheets), a key tool for today’s web designers.

What is CSS?

CSS is the acronym for: ‘Cascading Style Sheets’. CSS is the sister language to HTML that allows you to style your web pages. An example of a style change would be to make words bold. In standard HTML you would use the tag like so:

make me bold
This works fine and there is nothing wrong with it per se, except that now if you wanted to, say, change all your text that you initially made bold to underlined, you would have to go to every spot in every page and change the tag.

Another disadvantage can be found in this example: say you wanted to make the above text bold, make the font style Verdana and change its color to red you would need a lot of code wrapped around the text:

This is text
This is verbose (wordy) and contributes to making your HTML messy. With CSS you can create a custom style elsewhere and set all its properties, give it a unique name and then ‘tag’ your HTML to apply these stylistic properties:

<p class="myNewStyle">My CSS styled text</p>
And in between the <head></head> tags at the top of your web page you would insert this CSS code that defines the style we just applied:

<style type="text/css">
<!--

.myNewStyle {

font-family: Verdana, Arial, Helvetica, sans-serif;

font-weight: bold;

color: #FF0000;

}
-->
</style>
In the above example we include the style sheet code inline, or in other words, in the page. This is fine for smaller projects or in situations where the styles you’re defining will only be used in a single page.

There are many times though when you will be applying your css styles to many pages and it’s a hassle to have to copy and paste the CSS code into each page. Besides the fact that you will be cluttering up each page with duplicate CSS code, you also find yourself having to edit each of these pages … if you want to make a style change.

The solution: like with JavaScript, you can define/create your CSS style in a separate file and then link it to the page you want to apply the code to:

 <link href="myFirstStyleSheet.css" rel="stylesheet" type="text/css">
The above line of code links your external style sheet called ‘myFirstStyleSheet.css’ to the HTML document. You place this code in between the <head> </head> tags in your web page.

To create an external style sheet all you need to do is create a simple text document (on Windows you simply right-click and select new -> text document) and then change it from a file type .txt to .css. You can change the file type by just changing the file names extension. The file name’s extension on Windows tells the computer what kind of file it is and allows the computer to determine how to handle the file when, for example, you try to open it.

You probably guessed it; CSS files are just specially (specifically) formatted text files much in the same way that HTML pages are. There is nothing special or different about the file itself, rather it is the contents of the file that makes a CSS document a CSS document.

When working with an external CSS document there are a couple of points to remember:

1. You DON’T add these tags in the CSS document/page itself as you would if you embedded the CSS code in your HTML:

<style type="text/css"></style>
Since the link in your web page connecting the CSS page to your HTML page says that you are linking to a CSS page, you don’t need to declare that the code in the page is CSS. That is what the above tags do. Instead you would just add your CSS code directly to the page:

.myNewStyle {

font-family: Verdana, Arial, Helvetica, sans-serif;

font-weight: bold;

color: #FF0000;
}

.my2ndNewStyle {

font-family: Verdana, Arial, Helvetica, sans-serif;

font-weight: bold;

color: #FF0000;
}

.my3rdNewStyle {

font-family: Verdana, Arial, Helvetica, sans-serif;

font-weight: bold;

font-size: 12pt;

color: #FF0000;

}
In the above example I have created a series of CSS classes that can be applied to any HTML tag like so:

<p class="myNewStyle">My CSS styled text</p>
or

<h2 class="my3rdNewStyle">My CSS styled text</h2>
You will notice that in the above example I applied a CSS style to an <h2> tag. This tag sets the size of the text that it wraps to a size that is preset in the browser (ex: 10 pixels). When you apply a CSS class to it, the CSS code overrides the default size that you would normally get with an <h2> tag in favor of the size specified in the CSS class. So now you can see that CSS can override default HTML tag behavior!

In the above examples, I have CSS code where I define my CSS classes and then ‘apply’ them to various elements in the page. Another way to apply CSS is to globally redefine an HTML tag to look a certain way:

h1 { font-family: Garamond, "Times New Roman", serif; font-size: 200%; }
What this CSS code does is set the font style and size of all <h1> tags in one shot. Now you don’t have to apply a CSS class as we did before to any <h1> tag since they are automatically all affected by the CSS style rules.

Here is another example of where I give the whole page bigger margins:

body { margin-left: 15%; margin-right: 15%; }
As you can see, you can redefine any tag and change the way it looks! This can be very powerful:

div {

background: rgb(204,204,255);

padding: 0.5em;

border: 1px solid #000000;
}
Set in the above code, any <div></div> tag will now have a background color of ‘rgb(204,204,255)’ and have a padding of 0.5em and a thin 1 pixel border that is solid black.

A few things to explain about the above:

Color in CSS can be expressed in a few ways:

1. In Hex -> for example: #000000 – this is black and this: #FF0000 is red.

2. In rgb -> rgb(204,204,255) is a light purple-blue color.

3. With named colors like: ‘red’ or ‘blue’

I typically use hex color since I am familiar with them or I just use named colors. So the last example can be rewritten like so:

div {

background: green;

padding: 0.5em;

border: 1px solid #FF0000;
}
So instead of ‘rgb(204,204,255)’ , I just specified ‘green’.

By using RGB (RGB is the acronym for: ‘Red Green Blue’) and Hex color, you can really get the exact color you want easily when you know your codes. Luckily many programs (like Dreamweaver) provide easy to use color pickers for you so you don’t need to know the values for the code.

In this last example I will show you the ‘super cool’ CSS code that allows you to create link roll-over effects without images:

:link { color: rgb(0, 0, 153) } /* for unvisited links */
:visited { color: rgb(153, 0, 153) } /* for visited links */
:hover { color: rgb(0, 96, 255) } /* when mouse is over link */
:active { color: rgb(255, 0, 102) } /* when link is clicked */
The above CSS will cause your link to change color when someone hovers their mouse pointer over it, instant rollovers with no images! One important note with the above code is that it is important that the style declarations be in the right order: "link-visited-hover-active", otherwise it may break it in some browsers.

CSS is very powerful and allows you to do things that you can’t do with standard HTML. It is supported nicely now in all the modern browsers and is a must learn tool for web designers.

The above examples are just a small sample of what you can do with CSS, but it should be more than enough for you to start styling your pages nicely. Like with many technologies, CSS has a lot of capability that most people will not need to use often if at all. Don’t get caught in the trap of thinking that if there is some functionality/feature available, that you have to use it.

Lesson 5 : CSS Tutorial

CSS Tutorial: Part 1

Now that we have the first few lessons under our belts, we will be taking the next step towards total nerd glory with this first of a three-part lesson on creating a pure CSS web page.

Not just CSS styling, but CSS positioning too, that means NO TABLES required!

Once completed, you will be creating pages in sophisticated ways that will allow your web sites to be seen on all types of devices including normal computers, cell phones, Iphones, PSPs … any device really!!

… That also means you will be able to put out websites with much less work where your web pages will load faster and will be easy to update and print!

CSS Template Layout – Part 1 of 3

In this easy to understand (I hope!) tutorial on creating web pages with CSS, I will concentrate on the key components of css, where (by the end of the tutorials) you will be able to create nice looking CSS based web pages.

After completing this tutorial, you should have enough information to explore CSS and web page design even further … into to areas I don’t cover here.

Let’s get started:
You can download the CSS and HTML files we build in this tutorial: CSS files
You can check out what the page should look like here: CSS Example Page
Tags used in this CSS based layout:

Because of the power of CSS, we will be able to reduce the number of HTML tags we use in a page big time, all the while still being able to lay out great-looking pages using only 6 types (for lack of a better word) of HTML tags.

The tags we will use to layout the content:

1. <h.> The Heading tags which range from ‘<h1></h1>’ to ‘<h6></h6>’ , are going to be used to mark/tag headings in our pages. So the most important heading will be wrapped in a <h1> tag and the least important in a <h6> tag. An example of a heading for this article:

<h1>CSS Template Layout</h1>
This tells the browsers and the search engines, too, that this page is primarily about: ‘CSS Template Layout’

All browsers have a default size (for each <h.> tag) as to how it renders text placed between these tags. Many of these defaults can be unusable (especially <h1>) because they come out too big. But never fear, CSS is here, and we will use CSS to make the text sizes more to our liking.

2. <p> The Paragraph tag is used to mark parts of the pages as being ‘paragraphs’, simple enough. Paragraph tags are what is called a ‘block element’; that means that it acts like a block where a space is automatically inserted before and after each <p> tag pair. You will see it work in the examples coming up.

3. and List tags will be used to create our menus. The tag is the ‘un-ordered list tag’ that creates a list with bullets or other images/icons that do not specify or denote an order; hence the term ‘un-ordered’. The other list tag mentioned () is the ‘ordered list tag’ and it creates a list that, instead of with bullets, marks the list items with numbers or letters. Code examples to follow.

4. <div> and </div>: Div tags allow you to demark a portion of your page so that you can do things to it. Another way of saying ‘demark a portion’ can be ‘to put into a container’. Once a part of your web page is in this <div> container you can do all kinds of stuff like style it, animate it, make it visible or invisible, and so on. Div’s represent the next generation of formatting HTML pages that, in many ways, are superior to tables.

We will use div’s to create containers for parts of our page. One div will be used to ‘hold’ our navigational menu and another div to ‘hold’ the main page.

5. <a href> The most important tag in HTML: the ‘link tag’ or the ‘hyperlink tag’. This makes text ‘hyper’ so that when we click on it we can load another page or activate/call some JavaScript (otherwise known as ECMA script).

6. This is the ‘image tag’, which allows you to link to images so that they show up in our pages. In HTML, images are not embedded into the actual page, instead the image tag () only points to where the image is and the browser will attempt to load that image when a surfer loads your HTML page.

That covers the HTML tags we will use in our layout! No need for table tags,
 tags, and nasty (and DEPRICIATED) tags.

Creating the basic page template

To work through the examples, we are going to need a practice HTML page.

To create the practice HTML page do the following:

1. Go to your desktop and create a simple text document. On Windows all you need to do is right-click and select: New -> text Document.

This will create a simple blank text document on your desktop. Name the file: practiceHTML.htm. Windows will show you a warning asking you if you want to change the file extension. Just say ‘yes’. Now right click on the file and select: ‘open with’ and select ‘Notepad’. Once inside Notepad, paste in the template code found in the grey box below:

(A simple way to cut/paste text in Windows is to press and hold the Ctrl key and ‘c’ for copy and ‘v’ for paste.)

<DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html>

<head>

<title>My Practice HTML Page</title>

<meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1">

</head>

<body>

</body>
</html>
This code forms the basic structure for all HTML pages. You can now cut and paste the code samples in between these tags:

<body><!--Insert code here! --></body>
One last note: in between the <body> </body> you find what is called a comment. Comments are a way to place notes that cannot be seen in the browser . Anything in between the following characters becomes an HTML comment:

<!-- and -->
Anything inside comments will be invisible in the browser. So in the above example the word ‘and’ would be invisible in the browser. It is a good way to leave messages about what your are doing in the page. It can come in handy later on when someone else is working on the page or even when you are, because you may (you WILL) forget why you did things a certain way.

Building the CSS

Once you have created the template page, create a folder and name it something like: ‘myCSSwebsite’ and then drop the HTML page into it. In that same folder, create a new text document and call it: ‘myCSS.css’. Once created open that file and paste in this template CSS code and then save it:

/* Generic Selectors */

body {

font-family: Georgia, "Times New Roman", Times, serif;

font-size: 14px;

color: #333333;

background-color: #F9F9F9;

}

p {

width: 80%;

}

li {

list-style-type: none;

line-height: 150%;

list-style-image: url(../images/arrowSmall.gif);

}

h1 {

font-family: Georgia, "Times New Roman", Times, serif;

font-size: 18px;

font-weight: bold;

color: #000000;

}

h2 {

font-family: Georgia, "Times New Roman", Times, serif;

font-size: 16px;

font-weight: bold;

color: #000000;

border-bottom: 1px solid #C6EC8C;

}

/**************** Pseudo classes ****************/

a:link {

color: #00CC00;

text-decoration: underline;

font-weight: bold;

}

li a:link {

color: #00CC00;

text-decoration: none;

font-weight: bold;

}

a:visited {

color: #00CC00;

text-decoration: underline;

font-weight: bold;

}

li a:visited {

color: #00CC00;

text-decoration: none;

font-weight: bold;

}

a:hover {

color: rgb(0, 96, 255);

padding-bottom: 5px;

font-weight: bold;

text-decoration: underline;

}

li a:hover {

display: block;

color: rgb(0, 96, 255);

padding-bottom: 5px;

font-weight: bold;

border-bottom-width: 1px;

border-bottom-style: solid;

border-bottom-color: #C6EC8C;

}

a:active {

color: rgb(255, 0, 102);

font-weight: bold;

}

/************************* ID's *************************/

#navigation {

position: absolute;

z-index: 10;

width: 210px;

height: 600px;

margin: 0;

border-right: 1px solid #C6EC8C;

font-weight: normal;

}

#centerDoc {

position: absolute;

z-index: 15;

padding: 0 0 20px 20px; /*top right bottom left*/

margin-top: 50px;

margin-left: 235px;

}
Don’t let the CSS freak you out, I will explain the important details and you will soon see how easy it really is. One last thing for you to do before I finish this part of the tutorial, we need to add some code to our HTML page.

In between the <body></body> tags you will need to insert this code:

<div id="navigation">

<h2>The Main navigation</h2>;

</div>
<div id="centerDoc">

<h1>The Main Heading</h1>

<p>

Go to the Web Designer's Killer Handbook home page and grab

 the practice HTML page that we will used as the starting

 template for this tutorial. You can find it under the heading:

 'To create the practice HTML page do the following:'.

Follow the instructions there and create your basic HTML

page - and do it now!

</p>
</div>
And in between the <head> </head> tags you will need to insert this:

<title>First CSS Tutorial</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<link href="myCSS.css" rel="stylesheet" type="text/css">
With this in place we will be able to start styling our page. If you take a look at the HTML page now you may be surprised to see that we already started!

If you haven’t set the page up yet, please do so to make sure you have everything working thus far. Should you have any problems, go to the KillerSites.com Forum and post your questions.

CSS Tutorial: Part 2

In Part 1 we created a classic two-column layout with left side navigation using CSS and only a few types of HTML tags. Part 1 presented the code for the page and explained what HTML tags we were going to use. This week I will look at the actual HTML code we used thus far and the CSS.

You can check out what the page should look like here: CSS example page
Our page thus far is really very simple. As you may already know, all the content (text, images, Flash, etc.) that the user sees when viewing a web page is marked-up with HTML in-between the <body> and </body> tags.

In this case we have this:

<body>

<div id="navigation">

<h2>The Main navigation</h2>

</div>

<div id="centerDoc">

<h1>The Main Heading</h1>

<p>
 </p>

</div>

</body>
Note:

You should create your own basic HTML page so that you can follow along and build the page as I do.

In the above code we see that we have 2 main sections, each enclosed inside <div> tags. As you learned in Part 1 of this tutorial, <div> tags are designed to be used to create a ‘division’ in the document or, in other words, create a container.

We have created two such containers and given each of them a unique ID:

<div id="navigation">

...

<div id="centerDoc">
You will notice that the entire contents of the page are contained in one of these two major page divisions. So the first questions are: what are the rules of ID’s in HTML pages and why do we use them and assign them to page elements like DIVs?

1. First of all, you can assign ID’s to any HTML tag. So I could have assigned an ID to a <p> tag as well.

2. An ID in a page should only be used once. That is to say that no two elements on any one page should have the same ID. ID’s are meant to uniquely identify a page element. So in the above example we know that there is only one page element with an ID of ‘navigation’ and only one page element with an ID of ‘centerDoc’. I like to use ID names that talk to you, it is pretty clear what is going on in each division we created above.

3. ID’s on HTML page elements (tags) are used in CSS. We can target ID’s in our CSS code to change the appearance, position, and even behavior of that element by referencing the ID of the element.

Inside the <div> tags we use header tags (<h1> and <h2>) to set the headers. I explain what header tags mean in Part 1 of this tutorial.

And finally, I have some <p> tags, and of course I insert the text that makes up this simple page in-between them.

Now I am going to jump to our CSS file that is attached to the HTML page. We attach the CSS document with this line of code in between the <head> </head> tags:

<head>
 <link href="myCSS.css" rel="stylesheet" type="text/css">
</head>
Like a normal page link we have an ‘href’ attribute – this time pointing to a CSS document that has all our CSS code that will affect this page since it is linked to it. This is not the only way to associate CSS code to pages (there are a few other ways) but we will leave that to another article. So in the above link we name the CSS file name with this: ‘href="myCSS.css"’ and we tell the browser that the link is to a CSS page with this attribute: ‘type="text/css"’. All that is important here is that the link points to a CSS file with the name: ‘myCSS.css’

So now that we have the style sheet linked to the document, lets look at some CSS code. This first snippet of code ‘styles’ the unique ID’s we were talking about before:

#navigation {

position: absolute;

z-index: 10;

width: 210px;

height: 600px;

margin: 0;

margin-top: 0px;

border-right: 1px solid #C6EC8C;

font-weight: normal;

}

#centerDoc {

position: absolute;

z-index: 15;

padding: 0 0 20px 20px; /*top right bottom left*/

margin-top: 50px;

margin-left: 235px;

}
There is a lot going on here so we will focus on just a few elements for now. In the above elements we have 2 selectors (the ‘#navigation’ and the ‘#centerDoc’), one for each ID, and each selector is followed by the curly brackets: { }. In-between the curly brackets we list the ‘properties’ which specify what style to apply to the selector. So here is the CSS selectors’ code with all its guts (its properties) removed:

#navigation {

/*Look ma no CSS rules!*/

}

#centerDoc {

/*Look ma no CSS rules!*/

}
I just inserted the text: ‘/*Look ma no CSS rules!*/’ to show you where the CSS code would normally be. So now you can see that anything in between the curly brackets is part of one group or package that in CSS is generically called a property.

In our above examples you can see that there is some text that appears before a curly bracket. That text gives a name to the selector. So in this case we have two selector names and thus two selectors: #centerDoc and #navigation. So why do we have the # symbol in front of the text? Why can’t we call it simply ‘centerDoc’ and ‘navigation’?

Like HTML and programming, certain text in certain places has special meaning that tells the system to do something specific. In this case, whenever you have a # symbol in front of a name of a CSS selector we are saying that this selector is a special type of selector called an ‘ID’ selector. What is so special about an ID selector? That type of selector can only be applied to one element in the HTML page. Sounds familiar?

So those of you not asleep at the computer now see that we have a CSS ID selector for each of our HTML divs that have an ID, and they have the same corresponding names. So the CSS selector #centerDoc applies to the div: ‘<div id="centerDoc">’, you got it? Whatever CSS rules/styles we choose to code into our ID selector will change what appears inside the corresponding div. So for the div with the id of: ‘navigation’ we have these CSS rules:

#navigation {

position: absolute;

z-index: 10;

width: 210px;

height: 600px;

margin: 0;

margin-top: 0px;

border-right: 1px solid #C6EC8C;

font-weight: normal;

}
Notice at the bottom we say all text will have a font-weight of ‘normal’ by giving it this property:

font-weight: normal;
We could just as easily have said that we want all the text to appear in the div (the div with the ID ‘navigation’) bold instead – then the property would look like this:

font-weight: bold;
But I digress, I already go into detail about CSS in a previous article on CSS. This tutorial was about creating an easy to use page template so I will point out the 2 main elements that make this thing work.

In our page, the navigation div is sitting on the left and it has a border … why? It has a nice light green 1 pixel border because I set this in my CSS:

border-right: 1px solid #C6EC8C;
Pretty self explanatory, no? I would suggest changing the color of the border and changing the pixel thickness of the border and see how it looks.

Why is the navigation sitting on the left of the page while the centerDoc is to the right of it? Well first thing to look at is this line in the navigation selector:

position: absolute;
This tells the browser to just place this div on the page as is. This is oversimplifying the subject, but for our purposes this works for now.

The real magic in this is the CSS code for centerDoc:

#centerDoc {

position: absolute;

z-index: 15;

padding: 0 0 20px 20px; /*top right bottom left*/

margin-top: 50px;

margin-left: 235px;

}
The line:

margin-left: 235px;
tells the browser to insert 235px (pixels) of margin to the left of the div with the ID ‘centerDoc’. That pushes that div over, giving room for the div ‘navigation’ to take that place. Or in this case, just creates a nice left-hand column.

Before we determined the margins, we’ve set something called ‘padding’ and it is what it sounds like: Space that is wrapped around our element (tag).

CSS has this feature and concept of a box model that essentially is a box that wraps around HTML elements. This box model consists of: padding, margins, borders, and the actual content. This allows us to place a border around elements and space elements in relation to other elements. From the inside out it is ordered like so:

content -> padding -> border -> margin

So in our case, anything in between our <div> tags is the ‘content’. Right after that comes the padding. Then there is a border and finally a margin. Margin and padding may seem like the same thing but if you think about it, you can see how being able to control the space before the border (padding) and after the border (margins) can really affect your layouts.

In this example you notice that the navigation div sits higher up on the page than the centerDoc div. This is not because of the order in which they appear in the HTML as they normally would without CSS, rather it is because of the margin settings I set for each selector; for centerDoc I set the top margin to 50px:

margin-top: 50px;
And for the navigation div I set it to:

margin-top: 0px;
This sets its top margin to 0 pixels so it will therefore be 50 pixels higher than the centerDoc div. I would suggest that you move the position of the navigation div under the center doc div in the HTML just to see if it changes anything, you will see that where the div appears in the actual HTML code has nothing to do with how it will appear to the user now that CSS positioning has been used. Another thing to try is to play with the CSS values and see what happens, change the padding, change the margins, etc.

We will conclude this discussion of CSS in Part 3.

1. There is more HTML that appears on top of the first <body> tag that is very important to the page but does not actually directly have anything to do with what appears in the page (from the user’s perspective) so I won’t discuss it in this article.

CSS Tutorial: Part 3

In Part 2 of the tutorial we broke down the major sections of HTML on the page and established separation using DIV tags with unique ID’s attached to them:

<div id="navigation"> ... </div>
<div id="centerDoc"> ... </div>
Using DIV’s (to position the major page sections) is the alternate method to what most people use: tables. I would argue one method is not necessarily better than the other, but consider that CSS is the ‘official’ method to position page elements and tables should only be used to hold tabular data. On the other hand, there are simply times when using tables is much easier and CSS just doesn’t cut it. With our current layout (left or right side navigation) CSS is far easier to use and is an overall better solution.

Now that we have that covered, everything gets really easy from here. We’ve established our main document and the major sections are in place, all we need to do is add our text and images.

Breaking down the page:

This page is simple, we have just a single heading:

<h1>The Main Heading</h1>
And a single paragraph:

<p>
 Go to the Web Designer's Killer Handbook home page and grab the practice

 HTML page that we will used as the starting template for this tutorial.

 You can find it under the heading: 'To create the practice HTML page do

 the following:'. Follow the instructions there and create your basic HTML

 page... and do it now!

</p>
We define how the paragraphs and the headings will look in our CSS code:

p {

width: 80%;

}

h1 {

font-family: Georgia, "Times New Roman", Times, serif;

font-size: 18px;

font-weight: bold;

color: #000000;

}
This is pretty much self-explanatory. The only thing that should be mentioned is that we set the width of the <p> tags to 80%. This allows us to control all of our text width in one easy to edit spot.

The only thing missing from the page is the actual navigation. The best and easiest way to do this is by using list () tags. That makes sense, since navigational menus are essentially a list of pages.

We styled the list item tags with this CSS:

li {

list-style-type: none;

line-height: 150%;

list-style-image: url(../images/arrowSmall.gif);

}
The above code uses an image as the bullets for the list and makes the space between the listed items 1 and ½ times larger than normal (I like a little more ‘breathing room’). You don’t have to have images for the bullets, you could leave it without images and without bullets by just removing the attribute:

list-style-image: url(../images/arrowSmall.gif);
Or you could use one of the built-in bullet options: ‘disc’, ‘circle’ and ‘square’.

Next you should add an unordered list () in between the navigation DIV’s just under the ‘main navigation’ heading to the HTML page:

<h2>The Main Navigation</h2>

Page One

Page Two

To make things easier (for the purpose of the article), change the CSS affecting the list item tags () so that we use a built-in bullet:

li {

list-style-type: disc;

line-height: 150%;

}
Now we have the navigation!

That pretty much covers our goals for this tutorial, but we have just scratched the surface of CSS. As you can see, we created a nice looking page while using very few types of HTML tags. At this time there isn’t much text on the page, but we could add to the page easily, building it out to include lots of information and images with practically no HTML work at all!

I hope the CSS tutorial was useful to you, it may have been a little hard to get your head wrapped around this subject at first, but in time you will see that your efforts will pay off.

Lesson 6 : Advanced HTML

Maybe this lesson should have been called: ‘Developing an advanced understanding of HTML fundamentals’. We are not trying to learn advanced tricks or new tags, we are doing something far more useful: Understanding the basics is what separates the pros from the amateurs.

Introduction

HTML is a relatively simple technology to learn, so easy in fact that once people get just a very basic understanding, they jump into building web pages without much thought about learning anything more about the fundamentals of HTML.

As such, most web designers are not taking full advantage of HTML and CSS; they are wasting their time and money, generally making their lives more difficult.

The differences between logical and physical tags is one of the key fundamental concepts in HTML that, when understood, can have a huge impact on a web designer’s way of doing things.

Logical inline tags vs. Physical inline tags

Logical Tags

In HTML there are both logical tags and physical tags. Logical tags are designed to describe (to the browser) the enclosed text’s meaning. An example of a logical tag is the tag. By placing text in between these tags you are telling the browser that the text has some greater importance.

By default all browsers make the text appear bold when in between the and tags, but the point to take away from this is that the strong tag implies the importance of that text. This has impact with search engines like Google who look for such tags to help figure out what the page is about.

There are many logical tags and they include:

 : Strong – as above.

 : emphasize – usually renders (made to look like by the browsers) as italic.

 : a neutral inline container. – Read about this distinction below.

<div> : a neutral block element. – Read about this distinction below.

Logical tags, as mentioned above, have default ways in which browsers (like IE or Opera) render them. But it is understood that CSS should be used to give them their style, or in other words their ‘look’.

Physical Tags

Physical tags on the other hand provide specific instructions on how to display the text they enclose. Examples of physical tags include:

 : Makes the text bold.

<big> : Makes the text usually one size bigger than what’s around it.

 : Used to apply a font-face (like Arial or Helvetica) and font-color.

<i> : Makes text italic.

Physical tags are more straightforward; <i> makes the text italic, makes text bold and is used to set the font face and color for the text.

So why use one or the other?

In a nutshell, physical tags were invented to add style to HTML pages because style sheets were not around, though the original intention of HTML was to not have physical tags. Why? Well physical tags are just messy, tedious, and are more trouble than they’re worth (for the most part).

Rather than use physical tags to style your HTML pages, you should be using style sheets (also called Cascading Style Sheets or CSS).

Block level vs. Inline tags

What is the point of ‘inline’ in the description of the tag categories?

In HTML, tags are either ‘inline’ or ‘block-level’ elements.

Block level HTML elements

Block-level elements exist in their own virtual ‘box’ and are always followed by a line break (like hitting the ‘enter’ key after typing in some text). In other words, a block-level element breaks the flow of text and other elements to create a virtual box around itself.

Inline HTML elements

Inline tags (elements) become a part of the ‘flow’ of text in which they are inserted and have no ‘box’ around them and don’t have the line break, either.

An example of a block tag is a <p> tag (paragraph) and an example of an inline tag is the (bold) tag. Try the tags out and you’ll see what happens to your page when you use <p> tags and tags; all will be made clear once you see it for yourself.

[image: image3.png]HTML / CSS Box model
margin
border

border
margin

HTML has both ‘block-level” tags and ‘inline tags. Block-level tags
have the above virtual box wrapped around it that you can
control with CSS. Block level tags are also followed with an
automatic carriage return.

HTML block level tags: <p>, <divs, <blockquotes, <tables,

. <forms. <h1> to <h6o

So who cares?

You should care! Once you understand the differences (it’s really not that hard if you just give yourself a chance) and once you understand that you can use CSS to change elements from being block tags to inline tags and vice versa, you will discover tremendous power in your ability to layout your pages.

Lesson 7 : Javascript

Javascript Programming: Part 1

Basic concepts in programming: What is programming?

In Part 1 of this series, our goal is to get you used to some of the concepts found in JavaScript programming. These concepts are also applicable to many other programming languages like Java and PHP among several others.

With this fundamental understanding you will be able to more easily learn how to program (as taught in Part 2 and Part 3), create web pages, use DHTML and even use software more easily. I know it seems unrelated, but once you start catching on, you will see how it is connected! Soon Java, Java Script, .NET, ASP, PHP, and many other languages and technologies will be very approachable.

A side note:

Before you artists get spooked and run off; I started out as a graphic designer with no technical background except for a basic understanding of HTML. I made the decision and slowly picked up Java Script and then several other languages. If I can do it, so can you!

Every time you learn something new, you elevate yourself. Learning programming will just make you a more valuable person to have around, thus you will be giving yourself more options.

Let’s start with the very basics:

Programming is like talking to the computer in a language the computer understands. And like spoken languages, there are many languages that computers can speak. In the world of the Internet, the key language is arguably JavaScript, just as in the United States it is English and in France it is French. You use programming to tell the computer what to do.

Javascript Programming: Part 1a

Basic Programming Concepts: continued

Like spoken languages (ex: French, English) programming languages have rules (grammar, spelling, etc) and meaning for certain special key words. In English the word ‘throw’ has a meaning; it means to ‘toss’, ‘pitch’, ‘fling’, something or someone.

One such ‘key word’ in JavaScript is the word ‘function’; this keyword tells the computer that this is the beginning of code (programming code) that does something, or in other words, takes an action. (Before I go on: do not make a common mistake and confuse ‘JavaScript’ with ‘Java’ – they are two totally different things!!) Here’s a made-up example for JavaScript:

function: Pop up a box and say: ‘What’s up Jimmy? ‘

This made up example (not real programming!) is telling the computer to pop open a box and say: ‘What’s up Jimmy?’

Just for the curious, I will now show you the real way to do this with Javascript:

function popupMessage()
{

alert("What's up Jimmy?");
}
What’s that supposed to mean? I know that for many of you this is already very confusing, but hold on, it’s well worth it!

Programming languages have other words (besides ‘function’) that have special meaning – special meaning that tells the computer what to do. So when you are programming, you are using special keywords to tell the computer what to do.

You use programming to write (in other words: create or build) software (ex: Mircrosoft Word, Internet Explorer, and even Windows!) and software enables you to more easily control your computer.

Computers are really, really stupid. So stupid in fact that if you were talking to a computer directly, you would have to use a very simple language that is so slow to write, that it becomes very difficult to get anything done since you have to explain every single step to the computer. How simple you ask? So simple that even something like printing the letter ‘A’ on screen could take you days to build because of all the code you would have to write!

Javascript Programming: Part 1b

Basic Programming Concepts: continued

Computers can only understand ‘yes’ and ‘no’ – without the help of software/programs. If we go into a little more nerd detail, we see that computers actually see ‘yes’ and ‘no’ as 1 and 0. Once again we can say that programs are sets of written instructions telling computers what to do.

Because of how stupid computers really are, programmers (a.k.a.: nerds) over the years have written programs that make it much easier for us to ‘talk’ to computers. One of these programs that make our lives easier is the web browser.

Built into Internet Explorer, Netscape, and most other web browsers is the ability to understand a programming language called JavaScript. With JavaScript we can indirectly control the computer.

I hope that this basic explanation of programming clears things up a little for all of you reading.

Ok, that is a lot of abstract information to take in, let’s look at something a little more concrete.

Are HTML and CSS programming?

We know by now that HTML and CSS are used to build web pages. This is a question that comes up from time to time; since HTML and CSS are essentially just lots of code that is used to tell the browser what to display (HTML) and how to display it (CSS), isn’t it programming? The answer is ‘NO’, and this is why:

The fundamental difference between coding (ex: HTML, CSS) and programming (JavaScript, Java) is that in programming you can make decisions based on something happening.
For instance, you can write a little JavaScript that causes a small message box to appear if the user (the person looking at your page) does something. This can be clicking on a button or pressing on the ‘C’ key on the keyboard etc.

This is of course a simplification of the situation but it essentially covers it. It can get confusing because in the world of the Internet there can be a ‘gray’ area where without using programming you can get the browser to do something on its own. An example of this is the META tag ‘refresh’. This tag allows you to tell the web page to reload itself or to load an entirely new page after a specified number of seconds or minutes. Here’s what the META tag ‘refresh ‘ looks like:

<meta http-equiv='refresh' content='3; URL=http://www.killersites.com'>
This tag tells the browser to load the page: http://www.killersites.com after 3 seconds.

Some people will get a little confused and say that since the META tag code is telling the browser to do something, it is programming. Right? Wrong!! The reason that it is not programming is because there is no decision being made. No matter what else may happen (as long as they stay on the page for at least 3 seconds) the page will automatically load the website in the Meta tag (in this case: http://www.killersites.com).

To make this example act like it was truly programmed, you would have to be able to (for example) control if the browser would reload the page or some other page depending on, say, what the user did on the page.

An easy example: say you had a box on your web page where the user could enter in a number, and depending on the number entered, the browser would load a particular page.

This shows how programming allows you to make decisions based on as many possibilities you want.

One more example: you can, with JavaScript, check to see what browser the user is using to view your web page and what time of the day it is. So with this information you can send people to a particular website if it is, say, before 12 pm and they are using Internet Explorer as their browser. And you can also program to send them to another web site if it is past 12 pm and they are using Netscape. Any combination is possible and that is the power of programming!

A final point

This is just the first part of this series, in Part Two I will slowly introduce you to more concepts that will give you the foundation you need to get into some real programming. With just a little patience, in no time, you all will be programming!

Javascript Programming: Part 2

Object Oriented Programming

This is only the 2nd installment of a series of articles designed to teach total beginners how to program, providing a foundation to learning many of today’s most prominent languages that include JavaScript, PHP, Java, and several others.

The eventual goal is to teach you how to program using the DOM. I move fairly slowly in these articles, attempting to cover any stumbling blocks that may hinder people.

When learning something new, things may not be clear at first. You just need to push on because sooner than you think, things will ‘snap’ into place for you. Soon you will be wondering why you thought it was hard in the first place!

One of the reasons people find programming so challenging is that they do not get a good enough grasp of the basics. In my own process of learning to program (I have picked up 8 languages so far) I have always found that every time I got confused was because there was some basic concept I did not grasp. The solution is always to go back to the basics, because once you have them, everything else is easy!

Why did I mention all this?

I wanted to explain the reasoning behind my approach to teaching programming in these articles. The first two articles are theory-heavy and I take my time to slowly introduce these core concepts of programming. There are some actual programming examples but they are short. Once the basic concepts are understood, we will jump into practical usable programming examples, which by that time will be much easier for you than if I would have jumped in right away.

Our eventual goal: to use the DOM

The DOM (stands for: Document Object Model) is a framework that allows you to have total control over your web pages using JavaScript. What do I mean by ‘total control’? I am talking about being able to add, remove, and edit text, images, and tables and any other element on the page on the fly.

Easily build dynamic menus, change the font size of a paragraph on your page when someone clicks a link or image, etc. I won’t go on, but you can do all this and much more and it will work with all the modern browsers since the DOM is a standard that the browsers adhere to well.

Introduction to Object Oriented Programming

Object-oriented programming is the ‘in way’ to write software and is the foundation of many languages including JavaScript. To truly understand how to use JavaScript you must understand some of the basic concepts of object-oriented programming.

I will only be teaching you what you need to work with JavaScript so don’t worry! But what you will learn about object-oriented programming is applicable to every object-oriented programming language out there, and that’s a good thing.

OOP (OOP is short for: O bject O riented P rogramming) is a style of programming that is used in many of today’s most prominent languages that include Java, PHP, C++, JavaScript, and several others. In a nutshell, OOP attempts to build programs by conceptually breaking them up into a series of individual objects (programmed objects) that interact with each other to create a program. In a sense, these objects are like mini-programs inside one big program.

Another way you can think of it is as a business (like Microsoft or McDonalds) where the business is the program and the objects are the people who work at this business and with each other to get the work done.

So for example, let’s say at a McDonalds we have Wang, who works the cash, Tyrone, who makes the burgers, and John, who washes the floors. These three guys are in of themselves individual objects (a little insulting I know, but hey, this is just an example!) and each of these guys (objects) has its own function (things that he/it does) and together they make McDonalds work. Of course there are several others working at McDonalds, but the point is that all these individuals work together to do the job of running the restaurant.

So when you’re Object Oriented Programming you are creating a bunch of individual objects that work together to make the program as a whole. I will get to an example in just a minute, but before I have two questions that must be answered:

Javascript Programming: Part 2a

Object Oriented Programming – continued

What are the other ways of programming?

The most prominent of the old styles of programming is procedural programming where software was designed based on processes. Ok, what does that mean?

It means that we just built programs in the order that they would do things. I don’t want to go into details because it would only serve to confuse you, and today you want to learn OOP anyway! The bottom line is that this old style of programming got messy really fast and made for buggy software that was (and still is) hard to maintain.

Why would you program the OOP way?

You build software in the OOP style to save time and money; OOP based software is easier to build and easier to maintain. Humans like to put things in boxes or categories to help them organize them; OOP is essentially doing that.

Since this is a website about building websites, we are going to concentrate on programming in web pages using JavaScript.

A web page contains many objects that we can manipulate with JavaScript. One of the base objects is the window object. This object represents the browser window and as such provides ways to affect changes to a browser’s window with JavaScript.

As I mentioned above, each of these objects (inside the program) have things that they do. These ‘things’ in programming-talk are called ‘functions’. So basically a function is a thing that an object can do. Objects can potentially do many things; as such you will often find objects that have many functions.

Ok, I don’t want to confuse you, but I need to clarify something: functions can also be called ‘methods’. So why call them functions or methods when they have the same meaning, why not just call them functions? The reason is simple and rather nerdy: functions are just slightly different from methods! For our purposes, it is sufficient to say that when a function exists inside an object, it is called a method.

I will not go beyond that explanation because to know the ultra-nerd details will have no impact on your ability to program. The only reason I mention it is because when you start reading about JavaScript (and other OOP languages) you will see the word ‘method’ used a lot.

Javascript Programming: Part 2b

Object Oriented Programming – continued

An example of a built-in method/function

One function (technically, a method) of the window object is ‘alert’. Here is a simple example of how to actually use the alert function:

window.alert("This is an alert box!");
This simple line has a lot of stuff going on. Once you understand what this line is actually doing, you will be well on your way to becoming a JavaScript programmer.

Since we are programming for use in the web browser (like Internet Explorer, for example) all of our programming code is being written to ‘talk’ to the browser and tell it what to do.

The first line of code is telling the browser that we want to use the built-in window object. We do this by starting with the keyword ‘window’. Ok, fine! the browser knows now that we are using its built-in object ‘window’. Like most objects, the window object has built-in functions/methods. So to tell the browser what method we want to use (that the window object has), we do this by naming it. In this cas, we want to use the ‘alert’ method so we type in a period after the keyword ‘window’ and then the name of the method that we want to use, in this case it is ‘alert’:

window.alert
The period in-between the words ‘window’ and ‘alert’ acts like a pointer for the browser to use and understand. Essentially by inserted the period between the words, the browser knows that the second word (in this case ‘alert’) is a method inside of the window object. If you were to do this:

window alert
The browser would have no idea what ‘alert’ was about. So in other words the period (.) in-between the words joins them together. This is called dot notation and is used a lot.

Next part of this line of code is much easier to understand:

("This is an alert box!");
Taken from this:

window.alert("This is an alert box!");
All methods can be fed information that the method can do something with it; hold on to that thought. You feed the method this information by placing it inside the brackets () that sit in front of the method name. In the above example we are feeding the alert method the text:

"This is an alert box!"

The browser knows it is text because the text: ‘This is an alert box!’ is sitting in-between quotes (“”). In programming, anything in-between quotes tells the computer that it is plain text and that there are no special key words telling it to do something.

When you are feeding a method/function information this way, it is called ‘passing arguments’. In this example the ‘argument’ is the text "This is an alert box!" and you are ‘passing’ it by placing it in-between the double brackets at the end of the method name:

window.alert("This is an alert box!");
More details about the double brackets

At the end of every method/function in JavaScript you need to put 2 round brackets that face each other like so:

()
So with the alert method we do this:

alert()
By having the two facing brackets at the end of a method/function, we are telling the browser that this is a function/method. It is also a good way for you to recognize functions when you see them; they always have a couple of brackets () at the end.

So for example, the following are all methods of the window object or in other words, they are methods contained in the window object. Some programmers will say the same thing by saying: ‘alert () belongs to the window object.’:

Open()

Close()

Focus()
There are several other methods that I have not listed. I want you tounderstand that objects can have several built-in methods, and that methods are identified by placing a couple of round brackets ‘()’ in front of them.

We are just about finished except for one little thing!

In JavaScript and several other languages, we need to tell the computer that we have reached the end of the line of programming code. To do this we use the semi-colon:

;

So in our example we have this completed line:

window.alert("This is an alert box!");

So when the computer is reading this line it knows we are done when it finds the semi-colon.

Ok, that is enough theory for now. Copy this code template into a blank HTML page and practice by changing the arguments passed to the alert method:

<html>

<head>

<script language='javaScript'>

function callAlert() {

window.alert"This is an alert box!");

}

</script>

</head>

<body>

<h3>Our first function</h3>

Click here to call the function

</body>
</html>
There are other things happening in this page that I haven’t spoken about yet, but do it anyway. The more you look at programming code and the more you write it the easier it becomes, so I would strongly suggest that you type it out by hand and get it to work then change things and see how it breaks.

MISC

Miscellaneous Topics: Part 1

The Web Designer’s Pre-flight Checklist

I always look for these elements in web sites:

1. Clean, easy to update design/structure.

2. Good usability in the design – and all that implies.

3. Fast loading ‘light’ pages.

4. Intelligent use of technology – using Flash when it makes sense not because you want a ‘cool’ intro!

5. The website’s ability to convey the meaning/message of the website quickly, if not instantly.

1. Clean easy to update design/structure
Just a few short years ago, the web was full of dancing mice, spinning globes, and animated construction workers, things have since changed and design principles are now actually put to good use … amazing! [image: image4.png]

The problem that we find now with many websites is that the design is not flexible. Websites constantly change, so if you find that putting in a new navigation button is going to take a lot of work, you have to reconsider your design. You should be able to freely add and remove elements from your pages with little to no trouble – that only makes sense.

2. Good usability in the design – and all that implies.
Usability is one of the new buzzwords that people like to use, but what does it mean? In a nutshell, usability is referring to (in web design) how easy someone can get around your website … how usable it is. If someone has to ‘hunt’ for your ‘home’ link or your contact information, then you have a usability problem.

3. Fast loading ‘light’ pages.
This is one of the oldest rules in the book! People will leave your site like a flash if your site takes over 10 seconds to load on a 56k modem. That means your pages have to be less than 60k – images and all.

Being that this is such an old rule of web design, you would think everyone would keep their pages light, right? Wrong! Just take a look around and it’s not hard to find 250k Flash websites! This checklist is just a reminder of what we all know, but sometimes in the excitement of building our masterpieces, we can forget … so check the checklist! [image: image5.png]

4. Intelligent use of technology – using Flash when it makes sense not because you want a ‘cool’ intro!
I think this is obvious to most people. All the technology used to build websites are just tools; we use a screwdriver when we need to, not because we want to. (Of course, I’ve been known to hammer nails with a screwdriver and saw wood with a steak knife). The point is that you need to let the goal of the website dictate what technology you are going to use, and not what the flavor of the month happens to be at the time.

5. The website’s ability to convey the meaning/message of the website quickly if not instantly.
The one thing that gets on my nerves when I’m surfing the web is when I come to a web page where I can’t figure out what the website is about. (Ok, maybe pop-up windows are worse, but this still ticks me off!) Typically, these turn out to be what I would call ‘artsy’ websites, where the design is pleasing to the eye, but I have to ‘dig’ to get the point of the website.

Make sure that your visitors can easily know what’s going on (and why) when they get to you, otherwise you won’t be conveying your message too well because people will just be leaving your website.

Miscellaneous Topics: Part 2

Definition of a 4th generation web site

4th generation web sites have all the elements of a 3rd generation web site along with the following:

1. The proper use of markup (HTML): only structural tags in the HTML, use of CSS, proper use of structural tags in the layout (<h> tag order in a document for example).

2. Respect to usability in web site design: using proven layouts

3. Search engine-aware web pages and web site.

4. Well structured – easily updateable.

5. Automatically printable with CSS media type linked CSS files.

6. In a nutshell: a web standards compliant website.

Hardware you need to start designing web sites

You don’t need any special hardware to create web pages. Just a standard computer and an Internet connection so that you can put (upload) your website onto the web – this is assuming you want to get your website on the web.

Fortunately, web design is not like 3D animation where you need the latest and most powerful PC’s to be competitive. These days home computers are so fast that even three or four-year-old PC’s are more than enough to handle all your web design needs. If you’re not convinced and you still want to spend a couple of thousand on a new PC, give me a call!

Before you go out and spend your cash consider these points:

HTML pages are just simple text documents
Web design is more or less about creating HTML pages. Html pages are just simple text documents that use special ‘key-words’ called tags. To make a long story short, simple text documents are so easy to create and manipulate that hand-held devices can easily view them! Oh, and just in case it’s not clear, even the most powerful handheld PDA’s (personal digital assistant) only have a small fraction of the power/speed of the slowest of desktop computers or laptops.

Ok, some of you are crying that web pages are not just about text and HTML. There are images that have to be created and inserted into your pages, and we all know that image manipulation can really take a lot of juice (computer power). This is true in print work (where images have to be much heavier) but it doesn’t apply to web design because images used in web pages (Gif’s, Jpeg’s and PNG’s) have to be made really light so that they don’t take forever to download. In a nutshell, what this all means is that images only need a lot of juice if they are heavy images.

For those graphic designers out there who know print, images used in web pages (and all screen graphics by the way) need to be reduced to a PPI (DPI) of 72 to 76, a big contrast to the usual 300 DPI when working in the print world!

Miscellaneous Topics: Part 3

What are ‘LIGHT’ images?

Now that you are getting into the web game, you are going to hear a few things over and over again. One of these is the expression: making your images and your pages ‘light’. You will hear people say: ‘keep your web pages light …’ or ‘keep your images light …’

What the nerds are talking about is the size of the images in terms of file size; we are not talking about how bright an image is.

So how big (or better yet how small) do images and pages have to be to be considered ‘light’?

The last several years of web experience has shown that if people have to wait more than 10 seconds to see your page, you can kiss most of your traffic goodbye. High speed Internet access is growing, but sadly still too many people are using dial-up connections.

Last statitics I heard put the number of people on (slow) dial-up connection at about 60%. This number of course will vary from place to place, but the bottom line is that you should expect to have many surfers hitting your web pages at 56k or less.

56k is the speed of the fastest of dial-up modems you can expect, and 56k modems download at a speed of about 5.6 kilobytes per second. With this in mind, and the 10-second rule I just mentioned above, you can see that shooting to create pages under 60k (kilobytes) is a good idea.

The best way to keep your web pages ‘light’: image optimization.

The heaviest aspects of most web pages are the images. Following the old 80/20 rule we should concentrate on making our images as light as possible without making them look ugly. The process of ‘lightening-up’ an image, is commonly referred to as ‘optimization’.

How to optimize your images

Just about all the image editing programs out there (programs like Adobe Photoshop, Xara, Macromedia Fireworks) have the built in capability to output/create images that are as light as possible. These programs have special export filters that are designed to produce web-optimized images. When you start using image-editing software (and you will, if you are designing web pages) you will find that the process is pretty painless, though you will probably have to tweak things as you go along.

A little common sense can speed up your pages

Besides using these tools, there is no substitute for common sense approach; you may one day have to ask yourself if you really need that image that takes up half the page! Big pictures that take up a lot of space on the page will typically be pretty heavy…

Remember that unless you are National Geographic, Walt Disney, or Playboy, people are probably less interested in nice graphics/photos and more interested in the information/service your web site provides.

Conclusion

I hope that it’s clear that when it comes to web design, heavy-duty computers are not needed and are just a waste of money.

